Ir al contenido principal

De Leonardo da Vinci a Le Corbusier


Estas dos imágenes están íntimamente relacionadas. La de la derecha es del arquitecto y urbanista Le Corbusier (1887-1965) y pocos de nosotros teníamos conocimiento de ella, pero ¿Quién no conoce la de la izquierda? Esa figura humana, masculina, representada en dos posturas simultáneas. Una, con los brazos en cruz y las piernas juntas. La otra, con los brazos un poco más arriba y las piernas más separadas. La dibujó Leonardo da Vinci (1452-1519) en 1492 y la llamó Hombre de Vitrubio. Rendía así homenaje al arquitecto romano del siglo I a. de C. Marco Vitrubio Polión.

         Marco Vitrubio había explicado que, si un hombre se colocaba tumbado boca arriba, con brazos y piernas estirados, y se le colocaba un compás en el ombligo, los dedos de las manos y de los pies tocarían la circunferencia descrita a partir de este centro. Además, el cuerpo también quedaría inscrito en una figura cuadrada que tuviera como lado la altura del hombre. El dibujo no está exento de simbolismo: la circunferencia representa el cosmos, y el cuadrado, la Tierra. La figura humana, por tanto, queda así armónicamente relacionada con el universo y con el planeta. Parece indicar que en la naturaleza todo es proporcional, que hay un patrón común que permite hacer corresponder las medidas más grandes con las dimensiones humanas. Si dividimos el lado del cuadrado, que equivale a la altura del hombre, por el radio de la circunferencia –que es la distancia del ombligo a la punta de los dedos–, obtendremos el llamado número áureo o número de oro.


          El monje toscano Luca Pacioli (1445-1510) publicó un libro sobre esta cantidad: De Divina Proportione. Como el título indica, Pacioli quería hacer corresponder las relaciones entre las medidas con un designio divino –no podía ser menos en aquella época, y más viniendo de un religioso–. Afirmaba, por ejemplo, que el número áureo «tiene una correspondencia con la Santísima Trinidad, es decir, así como hay una misma sustancia entre tres personas –Padre, Hijo y Espíritu Santo–, de la misma manera una misma proporción se encontrará siempre entre tres términos, y nunca de más o de menos». Una frase no demasiado clara, en la que lo que se esconde es el deseo de indicar que la matemática de la naturaleza no nace del azar, sino de la voluntad divina, y de hacer encajar cualquier avance del conocimiento con las creencias cristianas.

         El número áureo ya había sido descubierto por Euclides. El matemático griego demostró que un segmento de longitud l podía ser dividido en dos partes, a y b, de manera que el cociente entre la longitud total y el segmento más largo (l/a) fuera igual al cociente entre el segmento largo y el corto (a/b). Estos cocientes daban un número de los llamados irracionales, es decir, de aquéllos que tienen un número indefinido de decimales sin que aparezca una cifra o un grupo de cifras que se repita a partir de determinado momento

         El número de oro vale 1,61803 y el número de decimales que podamos ir añadiendo. Como todo número irracional, no puede ser expresado como cociente de dos números enteros, pero sí con la ayuda de otros números irracionales.


A principios del siglo XX, el escritor inglés Theodore Andrea Cook (1867-1928) bautizó este número como ϕ (phi), en honor del escultor griego Fidias. Cook escribió libros como Espirales en la naturaleza y el arte (1903) y Las curvas de la vida (1914), donde mantenía que esta proporción se encuentra en numerosos elementos naturales, como conchas y cuernos. Cook afirmó –e intentó demostrar– que ϕ también estaba presente en diversas obras de arte. Probablemente, su entusiasmo lo llevó a ver demasiadas cosas que contenían su ϕ. Pero la gran difusión al número de oro la dio en los años treinta del siglo XX un personaje entusiasta –y no poco aficionado al esoterismo–. Se trata del ingeniero y diplomático rumano Matila Ghyka (1881-1965), que fue precisamente quien bautizó a ϕ como número de oro. En su libro La geometría del arte y de la vida intentaba demostrar que la proporción áurea estaba casi por todas partes, tanto en la naturaleza como en el mundo del arte –una de las personas que lo admiró y a quien hizo mucho caso fue Dalí–.


         Durante mucho tiempo se ha dicho –y se sigue repitiendo con frecuencia– que uno de los lugares de la naturaleza donde encontramos el número de oro es en el desarrollo de la concha del Nautilus pompilius. A medida que crece, se desarrolla formando una espiral muy vistosa. Se trata de una espiral logarítmica, es decir, que en cada vuelta la distancia desde el origen aumenta en una proporción fija. Si siguiera la proporción del número áureo, cada vuelta de la espiral estaría 1,618 veces más lejos del centro que la anterior. Diversos matemáticos han querido eliminar este error tan popular. Pero quien pensó en una demostración práctica fue un matemático jubilado que ahora se dedica a labores humanitarias en el Tercer Mundo: el norteamericano Clement Falbo (1931). En 1999 estableció un protocolo riguroso para medir las proporciones en la colección de conchas de nautilo que hay en la Academia de Ciencias de San Francisco, en California. Pacientemente, Falbo lo consiguió y descubrió que la pauta de crecimiento de la concha estaba entre 1,24 y 1,43, con una media de 1,33. Por tanto, el nautilo estaba lejos del número áureo.


         Cuando se forma la concha de un molusco, cuando crecen determinadas plantas, en los dibujos de la piel de algunos animales, encontramos formas que responden a distribuciones o ecuaciones matemáticas. La ley matemática o física puede ser más compleja o menos, pero es probable que al final la descubramos. Los matemáticos han observado que incluso dentro de los fenómenos caóticos, paradigma del desorden, podemos encontrar ciertas pautas. La naturaleza no puede sustraerse a estas normas. Por fantasiosas que parezcan las formas de la vida, se han formado de acuerdo con estas leyes. Lo que ocurre es que la naturaleza no es simplemente una administrativa disciplinada, que se limita a aplicar con eficiencia y de forma mecánica estas leyes, sino una gestora imaginativa que sabe explotar las posibilidades sin superar los límites. Y es eso lo que proporciona la sorprendente diversidad de las formas vivas.

          El número áureo también aparece en las denominadas series de Fibonacci (c. 1170 – c. 1250). Este matemático, que en realidad se llamaba Leonardo de Pisa, publicó en 1202 el Liber abacci, donde aparece esta sucesión: 1, 1, 2, 3, 5, 8, 13, 21... Cada elemento de la serie se obtiene sumando los dos anteriores. Y si dividimos un elemento por su antecesor obtenemos un valor muy próximo al número áureo –más exacto cuanto más elevados sean los dos elementos que escojamos–. Algunos artistas contemporáneos han utilizado las series de Fibonacci. Es el caso del italiano Mario Merz (1925), miembro del grupo Arte Povera. Merz afirma que se quedó impresionado por la forma en que crecen los números de Fibonacci y que eso le inspiró la idea de que es posible asignar un número nuevo a cualquier cosa en el mundo, «incluidos los objetos materiales y los seres vivos». Una de sus obras, titulada Iguana, fue realizada en 1971.


          Como elemento de inspiración o para encontrar unas proporciones armoniosas, el número de oro o la serie de Fibonacci pueden ser útiles. Pero ir más allá es un riesgo. Martin Kemp, profesor de historia del arte de la Universidad de Oxford, alerta sobre algunos trabajos pseudocientíficos –como el libro Las matemáticas y la Monna Lisa, de Bulent Atalay– o ficciones que se han convertido en éxitos populares extraordinarios –El código Da Vinci, de Dan Brown–. Si se toman como entretenimiento, quizás no hay más problemas con la falta de rigor. En todo caso, el público tendría que saber que, como dice Kemp, si dibujamos bastantes líneas en una pequeña imagen –triángulos equiláteros, pentagramas, etc.– será difícil «no encontrar alguna pauta interesante». Y de esta forma, con más o menos esfuerzo, podríamos relacionar las pirámides de Egipto con el hombre de Vitrubio o la Venus de Botticelli con la torre de Pisa. Todo es cuestión de paciencia.

         No obstante, esto no debe hacer pensar que el número de oro u otras proporciones son simples juegos. Más allá de la ficción o la narrativa fantástica hay verdaderos genios de la geometría aplicada al arte. Quizás el mejor ejemplo sea Le Corbusier, nombre con que se conoce al arquitecto suizo Charles Edouard Jeanneret. Él quiso contribuir tomando como base la figura humana. En 1943 dio instrucciones a unos colaboradores para que realizaran cálculos partiendo de esta premisa: tomemos un hombre con el brazo levantado, que llega así a una altura de 2,20 metros, inscribámoslo en dos cuadrados de 1,10 metros, subámoslo a caballo de los dos cuadrados y el tercer cuadrado que resulta da una solución sobre las proporciones humanas. El mismo año recibió una solución elaborada por Elisa Maillard, con un entramado de segmentos que estaban en proporción áurea entre ellos. Este entramado relativamente complejo fue la base del sistema que Le Corbusier llamó Modulor. A partir de aquí, el arquitecto obtuvo una serie de medidas que permitían diseñar diversos espacios y planificar construcciones con una base respetuosa con las proporciones humanas. Así, encontró determinadas cantidades que, según él, caracterizaban «la ocupación del espacio para un hombre de seis pies». Y a la hora de diseñar espacios se tenía en cuenta, con un cálculo matemático riguroso, qué necesidades reales tenía la persona. Aplicó el Modulor a diversas realizaciones y la más emblemática es L’Unité d’Habitation de Marsella. El edificio estaba diseñado para 1.600 personas, con 26 servicios comunes, un paseo comercial, 23 tipos de viviendas y un hotel. Las viviendas estaban pensadas para inquilinos muy diversos, desde el estudio para una sola persona hasta casas para una familia de diez miembros. A pesar de su aparente gigantismo, era el intento de plasmar en una obra sus ideas sobre la descongestión de los centros de las ciudades y el aumento, al mismo tiempo, de la densidad y de las superficies ajardinadas. Le Corbusier no se limitó a aplicar sus proporciones, sino que también buscó en obras clásicas indicios de la utilización del número de oro o incluso de su Modulor. 


Con esta entrada participo como #polivulgador en @hypatiacafe con el tema #PVLeonardo
Fuente : "El artista en el laboratorio" de Xavier Duran

Comentarios

Entradas populares de este blog

Sarah Boone

Me plantée aportar mi granito de arena a este once de febrero y escribir alguna cosa sobre una mujer de la que nunca hubiera oído hablar. ¡Hay tantas y tan olvidadas!, que tardé mucho en decidirme por una. El tiempo que me llevó sirvió para guardar una larga lista en mi blog de notas que, con placer, iré descubriendo poco a poco.              Elegí a Sarah Boone por ser la primera mujer afroamericana en obtener los derechos de patente de un invento y en una época terrible. Recordareis que no antes de terminar la guerra de secesión americana en 1865, no se abolió la esclavitud en el sur de Norteamérica, y Sarah nació en febrero de 1832 en el condado de Craven Carolina del Norte, cerca de la ciudad de New Bern, en plena zona esclavista.               Nuestra ingeniosa protagonista con quince años se casó, en noviembre de 1847, con un liberto llam...

Destino Titán

Estaba despertando, despacio, sin poder moverse. Su rostro evidenciaba dolor.      —¿Qué hago aquí? —gimió al entreabrir los ojos.     —Buenos días, soy su enfermera y estoy aquí para ayudarla.     —¡Devuélvanme a Titán! —gritó.      —Ha tenido una pesadilla.     —¿Me has oído muchacha? —insistió agarrándome del brazo—. ¡Quiero volver a Titán!      —Con nuestra tecnología actual tardaríamos casi diez años en llegar a Saturno y a su mayor satélite, Titán —sonreí —. Creo que ni usted ni yo podríamos pagar el billete.     Me la miré con ternura mientras acariciaba su cabello plateado. Recordé, que la anciana había ejercido como astrobióloga en el CSIT, y una vez jubilada se dedicó a escribir novelas de ciencia ficción.     —Joven, ¿no ve qué estoy sufriendo?     —Lo lamento, ¿quie...

¿Que es una Ligubia?

¿Que es una LIGUBIA? Me he inventado un hermoso y sabroso transgénico, políticamente incorrecto según para quien, pero sumamente tentador . Os presento a mi LIGUBIA, híbrido entre higo y alubia, ¿os lo imagináis? Me pregunte qué genes serian recesivos y cuales dominantes, cuál sería su fenotipo, si necesitaría mucha agua para sobrevivir o si sería mejor árbol que arbusto. Tenéis que verme en el laboratorio, activando y desactivando genes.                Preferiblemente mejor crear un arbusto mediano, el Ligubial, ya que el árbol de tipo higuera pierde productividad, debido a sus grandes raíces. Sera un arbusto con hojas de verde intenso, carnosas y con algo de pelusilla. Soportará el calor y la falta de agua, propiedad de la familia de los ficus a la que pertenecen las higueras. Nos ira bien que sea fuerte, porque hay que enfrentarse al destructivo calentamiento global. También será resistente a las enfermedades y a las plagas que normal...